- (b) Estimated calculations using NAVSEA DDS 300-2 (incorporated by reference, see 46 CFR 110.10-1). - (c) Estimated calculations using IEC 61363-1 (incorporated by reference; see 46 CFR 110.10-1). - (d) The estimated calculations using a commercially established analysis procedure for utility or industrial applications. [CGD 94–108, 61 FR 28279, June 4, 1996, as amended by USCG–2003–16630, 73 FR 65197, Oct. 31, 2008] ## Subpart 111.53—Fuses ## §111.53-1 General. - (a) Each fuse must— - (1) Meet the general provisions of Article 240 of NFPA NEC 2002 or IEC 60092-202 (both incorporated by reference; see 46 CFR 110.10-1) as appropriate. - (2) Have an interrupting rating sufficient to interrupt the asymmetrical RMS short-circuit current at the point of application; and - (3) Be listed by an independent laboratory. - (b) Renewable link cartridge-type fuses must not be used. - (c) Each fuse installation must provide for ready access to test the condition of the fuse. [CGD 94-108, 61 FR 28279, June 4, 1996, as amended by 61 FR 33045, June 26, 1996; USCG-2003-16630, 73 FR 65197, Oct. 31, 2008; USCG-2013-0671, 78 FR 60153, Sept. 30, 2013] ## Subpart 111.54—Circuit Breakers ## §111.54-1 Circuit breakers. - (a) Each Circuit breaker must— - (1) Meet the general provision of Article 240 of NFPA NEC 2002 or IEC 60092-202 (both incorporated by reference; see 46 CFR 110.10-1) as appropriate; - (2) Meet subpart 111.55 of this part; and - (3) Have an interrupting rating sufficient to interrupt the maximum asymmetrical short-circuit current available at the point of application. - (b) No molded-case circuitbreaker may be used in any circuit having a nominal voltage of more than 600 volts (1,000 volts for a circuit containing a - circuitbreaker manufactured to the standards of the IEC). Each molded-case circuitbreaker must meet section 9 and marine supplement SA of UL 489 (incorporated by reference, see 46 CFR 110.10-1) or part 2 of IEC 60947-2 (incorporated by reference; see §110.10-1), except as noted in paragraph (e) of this section. - (c) Each circuitbreaker, other than a molded-case one, that is for use in any of the following systems must meet the following requirements: - (1) An alternating-current system having a nominal voltage of 600 volts or less (1,000 volts for such a system with circuitbreakers manufactured to the standards of the IEC) must meet: - (i) IEEE C37.13 (incorporated by reference; see 46 CFR 110.10-1); - (ii) ANSI/IEEE C37.27 (incorporated by reference; see 46 CFR 110.10-1); or - (iii) IEC 60947-2. - (2) A direct-current system of 3,000 volts or less must meet IEEE C37.14 (incorporated by reference; see 46 CFR 110.10-1) or IEC 60947-2. - (3) An alternating-current system having a nominal voltage greater than 600 volts (or greater than 1,000 volts for IEC standard circuitbreakers) must meet: - (i) IEEE C37.04, IEEE C37.010, and ANSI/IEEE C37.12 (all three standards incorporated by reference; see 46 CFR 110.10-1); or - (ii) IEC 62271-100 (incorporated by reference; see 46 CFR 110.10-1). - (d) A circuit breaker must not: - (1) Be dependent upon mechanical cooling to operate within its rating; or - (2) Have a long-time-delay trip element set above the continuous current rating of the trip element or of the circuit breaker frame. - (e) Each circuit breaker located in an engineroom, boilerroom, or machinery space must be calibrated for a 50 degree C ambient temperature. If the circuit breaker is located in an environmentally controlled machinery control room where provisions are made for ensuring an ambient temperature of 40 degree C or less, a circuit breaker must